Histogram Features-Based Fisher Linear Discriminant for Face Detection
نویسندگان
چکیده
The face pattern is described by pairs of template-based histogram and Fisher projection orientation under the paradigm of AdaBoost learning in this paper. We assume that a set of templates are available first. To avoid making strong assumptions about distributional structure while still retaining good properties for estimation, the classical statistical model, histogram, is used to summarize the response of each template. By introducing a novel “integral histogram image”, we can compute histograms rapidly. Then we turn to Fisher linear discriminant for each template to project histograms from d−dimensional to one-dimensional subspace. Best features, used to describe face pattern, are selected by AdaBoost learning. The results of preliminary experiments demonstrate that the selected features are much more powerful to represent the face pattern than the simple rectangle features used by Viola and Jones and some variants.
منابع مشابه
LDA based Reduced Joint Integral Histogram for Feature Extraction Case of study: Face Detection
The face pattern is described by extracted features using the new Reduced Joint Integral Histogram (RJIH) data structure. Extending the classical representations of integral images and integral histograms, it joins the global information of two images. Then, we turn to Linear Discriminant Analysis (LDA) to project the obtained Joint Integral Histogram from d−dimensional subspace to one dimensio...
متن کاملIllumination Invariant Feature Selection for Face Recognition
We propose a novel hybrid illumination invariant feature selection scheme for face recognition, which is a combination of geometrical feature extraction and linear subspace projection. By local geometry feature enhancement technique, neighborhood histogram equalization (NHE) in our experiment, some illegible edges due to week illumination will be enhanced effectively. Then we applied classic li...
متن کاملImprovements of Object Detection Using Boosted Histograms
We present a method for object detection that combines AdaBoost learning with local histogram features. On the side of learning we improve the performance by designing a weak learner for multi-valued features based on Weighted Fisher Linear Discriminant. Evaluation on the recent benchmark for object detection confirms the superior performance of our method compared to the state-of-the-art. In p...
متن کاملDetection of +/-1 LSB steganography based on the amplitude of histogram local extrema
Recently Zhang et al described an algorithm for the detection of ±1 LSB steganography based on the statistics of the amplitudes of local extrema in the greylevel histogram. Experimental results demonstrated performance comparable or superior to other state-of-the-art algorithms. In this paper, we describe improvements to this algorithm to (i) reduce the noise associated with border effects in t...
متن کاملMulti-view face and eye detection using discriminant features
Multi-view face detection plays an important role in many applications. This paper presents a statistical learning method to extract features and construct classifiers for multi-view face detection. Specifically, a recursive nonparametric discriminant analysis (RNDA) method is presented. The RNDA relaxes Gaussian assumptions of Fisher discriminant analysis (FDA), and it can handle more general ...
متن کامل